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The phase behavior of ABC star triblock copolymers is examined using real-space self-consistent
mean-field theory. The central part of the triangular phase diagram for ABC triblock copolymers
with equal A/B, B/C, and C/A interactions is determined by comparing the free energy of a number
of candidate ordered phases. In this region of the phase diagram, the dominant microstructures are
cylinders with polygonal cross sections or two-dimensional polygon-tiling patterns. Most of the
known polygon-tiling patterns observed in experiments and simulations, plus some neighboring
morphologies, are considered in the construction of the phase diagram. The resulting phase behavior
is consistent with experiments and computer simulations. © 2010 American Institute of Physics.
�doi:10.1063/1.3469857�

I. INTRODUCTION

Due to their ability to self-assemble into a variety of
ordered microstructures, block copolymers provide a plat-
form for the development of fabrication techniques of func-
tional materials. Potential applications include lithographic
templates for nanowires, photonic crystals, and high density
magnetic storage media.1 Recently, the manufacturing of
large-scale ordered patterns by means of the self-assembly of
block copolymers under the direction of patterned
substrates2–6 has attracted increasing interest in scientific
community. This technology has the potential to decrease the
cost of lithography of sub-30-nm patterns, which is required
for improved data storage and computing speed in semicon-
ductor technologies.

The development of nanomanufacturing technology us-
ing block copolymers requires a good understanding of the
phase behavior of the block copolymers. The self-assembly
of block copolymers is driven by the various interactions
between the different blocks and the topological constraint of
the block copolymer architecture. The equilibrium phases are
a result of the delicate balance between these competing fac-
tors. Depending on the block copolymer architecture and
block-block interactions, a variety of ordered microphases
can be formed. Even for the simplest case of AB diblock
copolymers, a number of ordered phases have been obtained,
including lamellae, cylinders, spheres, and two networked
�gyroid and Fddd� phases.7–10 The number and complexity of
ordered phases increases dramatically when block copoly-
mers with more types of monomers and more complex archi-
tectures are used. For example, adding a chemically different
C block onto an AB diblock copolymer chain leads to ABC
triblock copolymers. Furthermore, the sequence and topol-
ogy of ABC block copolymers can influence their ordered

phases. Specifically, ABC triblock copolymers can assume a
simple linear ABC topology by connecting the three blocks
sequentially, or the three ends of the blocks can be linked at
one junction point to form an ABC star triblock copolymer.
Compared with AB diblock copolymers, the phase behavior
of either ABC linear or ABC star triblock copolymers be-
comes much more complicated.10,11 In AB diblock copoly-
mers, the phase behavior is controlled by two main param-
eters: the A block composition f and the product �N of the
polymerization N and the Flory–Huggins interaction param-
eter � which characterizes the interaction between the two
species. However, for the three-component ABC triblock co-
polymers, the parameters increase from two to five, includ-
ing three interaction parameters �ABN, �ACN, and �BCN, and
two independent volume fractions fA and fB. Therefore, their
phase diagrams become five dimensional. This feature makes
ABC triblock copolymers be good model systems for the
engineering of interesting structures which are not observed
in AB diblock copolymers. On the other hand, the complex-
ity of ABC block copolymers makes the exploration of the
whole phase diagrams a formidable task. Besides the extra
interaction parameters, the architecture and sequence of ABC
triblock copolymers play a significant role in the self-
assembling structures. For a given set of �ABN, �ACN, and
�BCN, linear ABC and ACB triblock copolymers have quite
different phase behaviors.10,12 Similarly, the self-assembly of
an ABC star triblock copolymer melt is very different from
that of a linear ABC triblock copolymer melt. In this paper,
we will focus on the phase behavior of ABC star triblock
copolymers.

The rich phase behavior of ABC star triblock copoly-
mers has attracted considerable attention. A series of experi-
ments have been carried out to study the formation of differ-
ent morphologies13–26 since the first three-miktoarm star
copolymers were synthesized in 1992 by Iatrou and
Hadjichristidis27 and by Fujimoto et al.28 A large number of
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microphases have been observed in these experiments. In
2002, a systematical study was carried on the self-
assembling of a set of ABC star triblock copolymers of the
type AxB1.0C1.0 with 0.2�x�25 by Gemma et al.11 using
Monte Carlo �MC� simulations. These authors focused on
polygonal-tiling patterns, which are cylindrical phases with
polygonal cross sections. These two-dimensional tiling pat-
terns are formed when the three blocks are immiscible and
the blocks are long enough so that the three-arm junctions
are localized on straight lines. Gemma et al. observed that,
for x increasing from about 0.4 to 2.5, the two-dimensional
�2D� tiling patterns follow the sequence �8.8.4�, �6.6.6�,
�8.6.4; 8.6.6�, �10.6.4; 10.6.6�, and �12.6.4�, where the 2D
tiling patterns are designated by a set of integers indicating
the sequence of polygons meeting at a vortex. These tiling
patterns have been observed in experiments of Matsushita et
al.29 Furthermore, some of 2D tiling patterns predicted by
the MC simulations have also been obtained in the dissipa-
tive particle dynamics simulations �DPD� by Huang et al.30

Very recently, two-dimensional tiling patterns of ABC star
triblock copolymers have been investigated using the self-
consistent field theory by Zhang et al.31 Despite these previ-
ous experimental and theoretical studies, a comprehensive
understanding of ABC star triblock copolymers is still lack-
ing.

From a theoretical point of view, the phase diagram of a
given block copolymer system is constructed by comparing
the free energy of different ordered phases. Due to a large
number of studies, it has been well established that the self-
consistent mean-field theory �SCMFT� provides a powerful
theoretical framework for the study of the phase behavior of
block copolymers.7,32,33 In particular, SCMFT can be used to
determine the relative stability of different phases because it
provides accurate estimate of the free energy. The essence of
the SCMFT is that the free energy of the system can be
written as a functional of the spatially varying polymer con-
centrations and a set of conjugate fields. The equilibrium
phases of the system corresponds to the polymer concentra-
tions and conjugate fields which minimize the free energy,
leading to a set of nonlinear equations or the SCMFT equa-
tions. In most cases, this set of SCMFT equations must be
solved numerically to obtain solutions corresponding to dif-
ferent ordered phases. In the past years, two complementary
methods to solve the SCMFT equations have been devel-
oped. In the first class of methods, or the spectral methods,
the spatially varying functions are expanded in terms of a set
of basis functions, leading to a set of algebraic equations for
the expansion coefficients. In the second class of methods, or
the real-space methods, the space is discretized and the dif-
ferential equations are solved using different numerical
schemes. The spectral method has been very successful in
computing the free energy of an ordered phase if the sym-
metry of the ordered phase is known, as first demonstrated
by Matsen and Schick.7 It should be emphasized that al-
though the initial application of the spectral method utilizes
the symmetry of the ordered phases, the spectral method is a
generic numerical method which is capable of predicting
new ordered phases once the symmetry restriction on the
basis functions is relaxed, as demonstrated for the case of

linear ABC triblock copolymers by Guo et al.12 Recently,
Zhang et al.31 have applied the spectral method to ABC star
triblock copolymers, revealing a rich array of two-
dimensional tiling patterns. Parallel to the spectral methods,
real-space methods to solve the SCMFT equations of poly-
mers have been developed, notably by Drolet and
Fredrickson.34 In recent years, the real-space methods have
benefited tremendously from the development of a highly
efficient algorithm solving the modified diffusion equations,
the operator-split algorithm as a second-order method
�OpS2� developed by Tzeremes et al.35,36 Furthermore, this
algorithm can be readily parallelized by using the FFTW

package for the fast-Fourier transformations. In addition, the
operator-split algorithm has been developed into a fourth-
order backward-differentiation-formula scheme with more
confidential accuracy for the free energy.37 A generic strategy
of studying phases and phase transitions of complex block
copolymer systems can be developed by combining the spec-
tral and real-space methods. First of all, the generic spectral
methods and large-scale real-space methods can be used to
produce a set of candidate structures. These candidate phases
can then be used as initial conditions in the more accurate
spectral or real-space methods to obtain accurate free ener-
gies.

In this work, we apply the strategy of combining the
real-space and the generic spectral methods to ABC star tri-
block copolymer melts. Specifically, the generic spectral
method of Guo et al.12 is first used as a screening technique
to obtain a set of candidate phases. These candidate struc-
tures are then used as the initial conditions for the real-space
method. In order to broaden the scope of the search, initial
conditions include some additional morphologies obtained
from experiments and computer simulations. The resulting
free energy of the different ordered phases are used to con-
struct phase diagrams of the system.

II. THEORY

We consider an incompressible melt of ABC star triblock
copolymers with a degree of polymerization N in a volume
of V and the chain lengths of A, B, and C blocks are fAN,
fBN, and fCN�fA+ fB+ fC=1�, respectively. Spatial lengths in
our calculations are expressed in units of the radius of gyra-
tion Rg of the polymer. Within the mean-field approximation
to statistical mechanics of the Edwards model of
polymers,32,33 at a temperature T, the free energy functional
F for n Gaussian triblock copolymer chains is

F

nkBT
= − ln Q +

1

V
� dr��ABN�A�r��B�r�

+ �ACN�A�r��C�r� + �BCN�B�r��C�r�

− �A�r��A�r� − �B�r��B�r� − �C�r��C�r�

− ��r��1 − �A�r� − �B�r� − �C�r��� , �1�

where �A, �B, and �C are the monomer densities. The par-
tition function Q is for a single polymer chain interacting
with the mean fields of �A, �B, and �C produced by the
surrounding chains. The interactions among the three dis-
similar monomers are characterized by three Flory–Huggins
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interaction parameters, �AB, �AC, and �BC. Minimization of
the free energy with respect to the monomer densities and the
mean fields leads to the following standard mean-field
equations33

�A�r� = �ABN�B�r� + �ACN�C�r� + ��r� ,

�B�r� = �ABN�A�r� + �BCN�C�r� + ��r� ,

�C�r� = �ACN�A�r� + �BCN�B�r� + ��r� ,

�A�r� =
1

Q
�

0

fA

dsqA�r,s�qA
† �r,s� ,

�2�

�B�r� =
1

Q
�

0

fB

dsqB�r,s�qB
† �r,s� ,

�C�r� =
1

Q
�

0

fC

dsqC�r,s�qC
† �r,s� ,

Q =
1

V
� drqK�r,s�qK

† �r,s� ,

�A�r� + �B�r� + �C�r� = 1.

In the above equations, qK�r ,s� and qK
† �r ,s��K

=A,B,C� are end-segment distribution functions which have
standard definitions.33 These distribution functions satisfy the
modified diffusion equations

�qK�r,s�
�s

= �2qK�r,s� − �K�r,s�qK�r,s� , �3�

−
�qK

† �r,s�
�s

= �2qK
† �r,s� − �K�r,s�qK

† �r,s� . �4�

The initial conditions are qK�r ,0�=qL
†�r ,0�qM

† �r ,0�, where
�KLM�� ��ABC� , �BCA� , �CAB�� and qK

† �r , fK�=1. For nu-
merical solutions, we employ the second-order operator-split
method35,36 to solve the modified diffusion equations for the
end-segment distribution functions. In our real-space calcu-
lations, the ABC star copolymer chains are placed in a rect-
angle box with sizes of Lx�Ly for 2D systems and a rectan-
gular cuboid box of Lx�Ly �Lz for three-dimensional �3D�
systems. Periodic boundary conditions are imposed auto-
matically on each direction of the box. The grid spacing is
chosen as small enough to ensure that it influences the free
energy with errors smaller than 10−8. The total chain contour
is discretized into 103 points.

III. RESULTS AND DISCUSSION

To focus on the influence of the compositions on the
phase behaviors, we fix the interactions between different
blocks as �ABN=�ACN=�BCN=60. In previous works, the
weak and strong segregation cases have been examined with
SCMFT by Zhang et al. and with MC by Gemma et al.,11

respectively. Their work suggests that the formation of
polygon-tiling patterns are common. Therefore, we choose

the intermediate segregation case which bridges the former
two cases. It is known that the real-space method to solve the
diffusion equations requires a high degree of discretization to
obtain high accuracy of free energy,37 especially in the strong
segregation phase region. In other words, the free energy is
sensitive to the discretization of the chain contour, �s
=1 /Ns, where 1 is the rescaled contour length by N and Ns is
the total discretized points along the chain. Cochran and
co-workers37 have carefully studied the influence of �s for
diblock copolymers in the strong segregation region. With
the OpS2 approach, a small �s ��10−3� is required to obtain
a reliable accuracy of free energy. However, the phase tran-
sition is not determined directly by the absolute value of free
energy, but by its relative value of different phases. Because
the phase transitions are determined by the free energy dif-
ferences between the different phases, the determination of
the phase diagram may be insensitive to the absolute accu-
racy of the free energy, particularly for the situation of weak
or intermediate segregation. In order to give a quantitative
description of this observation, we calculate the phase tran-
sitions between the bcc and hex phases of diblock copoly-
mers, which have been accurately determined with the spec-
tral method by Matsen,38 by using the OpS2 approach. Three
interaction parameters of the AB diblock copolymer, �N
=20, 40, and 60, are considered in our calculations. Each
phase transition point is identified with two different discreti-
zations of �s=10−2 and �s=10−3. The results are present in
Table I. The results of the phase transitions obtained by
OpS2 are present as five-digit decimals and those of the
spectral method from Fig. 2 of Ref. 38 are shown as three-
digit decimals. We can find that the influence of �s varying
from 10−2 to 10−3 on the phase transition boundary is very
small ��f 	10−4� for various �N=20, 40, and 60, although
the accuracy of the free energy depends more strongly on �s.
This phenomenon is also seen in our previous work.39 The
small error in the phase boundary is not significant either in
theoretical calculations or in experiments. For the present
system of ABC triblock copolymers, we will show that the
dependence of the phase transitions on �s is also neglectably
small in the following paragraphs. Therefore, we decided
that �s=10−3 as a reasonable discretization in the calcula-
tions of the phase diagram of the triblock copolymers.

There are two main steps in the construction of the phase
diagrams. The first step is to select possible candidate struc-
tures. The predicted structures by the generic spectral meth-
ods in Ref. 31 are used as candidate phases. In addition,
some morphologies observed in experiments and computer

TABLE I. The phase transition boundaries between the bcc and hex phases
obtained by the OpS2 with discretizations �s=10−2 and �s=10−3, together
with the free energy difference of the bcc phase between the two discreti-
zations in AB diblock copolymers. The transition data read from Fig. 2 in
Ref. 38 is shown as a reference.

�N
fbcc−hex

�s=10−2
fbcc−hex

�s=10−3
fbcc−hex

of Ref. 38 �Fbcc /nkBT

20 0.243 40 0.243 37 0.243 2�10−4

40 0.166 13 0.166 11 0.166 3�10−4

60 0.141 77 0.141 67 0.141 2�10−3
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simulations are produced by using some special initial con-
ditions. The second step is to identify the stabilities of these
structures by comparing their free energies obtained by the
real-space method. For each given set of block compositions,
or a given point in the triangular phase diagram, all possible
candidate structures from the previous theoretical and experi-
mental studies are considered. In our real-space calculations,
usually a rectangular box composed of one or two unit cells
are simulated; a lattice of 128�128 is used to discretize the
2D box and, accordingly, the grid spacing along either x or y
directions is smaller than 0.1Rg. For 3D structures, the lattice
is chosen as 643 and the grid spacing is still kept as smaller
than 0.1Rg.

The candidate structures in our calculations are present
in Fig. 1. Among these candidate phases, the cylindrical
structures, or polygon-tiling patterns, with translational sym-
metry along the third direction, including �6.6.6�, �8.8.4�,
�8.6.4; 8.6.6�, �10.6.4; 10.8.4�, �10.6.4; 10.6.6�, �8.6.4; 8.6.6;
12.6.4�, and �12.6.4�, are the 2D phases. Besides these po-
lygonal structures, additional three 2D structures, i.e., three-
color lamellae �L3�, the core-shell cylinders �HC�, and hier-
archical lamellae �HL�, are considered to determine the
phase diagrams together with one 3D structure of hierarchi-
cal cylinders �HHC� �Fig. 1�k��. Note that these structures
can have their mirror phases when the compositions are cy-
cling. For example, the main component contained in the
square domains of �8.8.4� can be A �red�, or B �green�, or C
�blue�. In our previous work,39 we have discussed that there
are other possible morphologies for the hierarchical lamellae

such as zero-shift hierarchical lamellae whose free energy is
very close to that of the 180°-shift HL in Fig. 1�h� when
�ABN=�ACN=�BCN=60. The free energy difference as small
as 10−7 can hardly influence the phase boundaries between
HL and other phases. Therefore, here we only consider the
180°-shift morphology of HL. Similarly, the shift of B/C
domains among neighbor cylinders in the structures of the
hierarchical cylinders is possible.11 For the hexagonally ar-
ranged cylinders, the packing of B/C domains with 180-
degree shifts among neighbor cylinders is frustrated. In ad-
dition, according to the similar reason in HL, the free energy
difference induced by the appearance of the shift in HHC
should be very small, too. To avoid the frustration, it is rea-
sonable to include only the zero-shift morphology of HHC
into the construction of the phase diagram. The basic vectors
of these periodic structures are denoted as ai �i=1, 2, and 3�.
These structures, including �12.6.4�, �8.6.4; 8.6.6; 12.6.4�,
HC, and HHC, have sixfold symmetry with a1=a2; the struc-
tures of �8.8.4� and �10.6.4; 10.8.4� have fourfold symmetry
with a1=a2; and the structure of �6.6.6� has threefold sym-
metry with a1=a2. However, the structures of �8.6.4; 8.6.6�
and �10.6.4; 10.6.6� have rectangular unit cells with a1�a2

and the structure of HL has a parallelogrammic unit cell with
a1�a2.

To show the symmetries of the 2D structures shown in
Fig. 1, their Fourier spectra �k�q� �k=A,B,C� are calculated
and are given in Fig. 2. The radii of filled circles denote the
peak intensities. From left to right of �c�, �d�, �e�, �f�, and �j�,
the patterns are for �A�q�, �B�q�, and �C�q�, respectively.
The three densities of �6.6.6� have the similar spectrum pat-

FIG. 1. Monomer density plots of typical ordered microstructures formed in
ABC star triblock copolymers with �ABN=�ACN=�BCN=60. The colors of
red, green, and blue, indicate the regions where the most components are A,
B, and C, respectively. There are seven 2D cylindrical structures of polygon-
tiling patterns with translational symmetry along the third direction: �a�
�6.6.6�, �b� �8.8.4�, �c� �8.6.4; 8.6.6�, �d� �10.6.4; 10.8.4�, �e� �10.6.4; 10.6.6�,
�f� �12.6.4�, and �j� �8.6.4; 8.6.6; 12.6.4� �these integers indicate the se-
quence of polygons meeting at a vortex in each pattern�; and three other 2D
structures, including �g� L3, �h� HL and hexagonally arranged HC, and one
HHC. The basic vectors of these periodic structures are labeled as ai �i
=1 ,2 ,3�.

FIG. 2. Typical Fourier spectra of the density profiles of �a�–�f� and �j� in
Fig. 1. The size of the filled circles denotes the peak intensities. For �a�, the
picture is for A �red�, B �green�, or C �blue� component; for �b�, the left
picture is for A or B, and the right one is for C; for others, the pictures from
left to right are for A, B, and C, respectively. For each pattern, some typical
diffraction peaks are labeled.
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tern of Fig. 2�a�, the A and B densities of �8.8.4� have the
similar spectrum pattern of the left one in Fig. 2�b�, and the
spectrum of the C density is the right one. Although the peak
intensities of small-angle x-ray scattering �SAXS� patterns
are the summation of the contributions from three compo-
nents in experiments, these calculated spectrums can be used
to explain experimental SAXS patterns qualitatively, particu-
larly useful for these complex 2D polygonal structures. The
peak intensities of �21� of �A�q� and �B�q� in Fig. 2�d� are
the largest and that of �20� of �A�q� is weaker. This obser-
vation is consistent with the relative intensity of �21� and
�20� peaks in Fig. 4 of Ref. 23. Other SAXS patterns of Figs.
2, 3, and 5 in Ref. 23 and Figs. 4 and 8 in Ref. 24 can also be
well explained by these Fourier spectrums.

In the MC simulations by Gemma et al.11 and
experiments,20,23 two of the three arms are kept to be equal
length and the arm-length ratio is expressed as 1:1 :x. We
start with the calculation of the phase stability along this
phase path. Here we assume that B and C arms have equal
length and the A arm holds the arm-length ratio of x
= fA / fB. The free energy differences of candidate phases
from the value of the homogeneous phase as a function of
the volume fraction fA are given in Fig. 3�a� as well as the

phase stability region as a function of x in Fig. 3�b�. In the
free energy plot, the free energy of some metastable phases
are not shown, such as that of HC in the region of 0.74

 fA
0.8, where HC has higher free energy than HL or
HHC. Consistent with the MC results, two 3D structures, i.e.,
the lamellae+spheres and lamellae in spheres, are not in-
cluded in our calculations. These two phases are located at
the two ends of the region of small x �around 0.2� and large
x �around 20�, respectively. For our choice of interactions,
the two regions are very small and it would not influence the
central part of the phase diagram much which is the most
interesting region for ABC star copolymers. With increasing
x, the phase sequence composed of L3, �8.8.4�, �6.6.6�,
�8.6.4; 8.6.6�, �10.6.4; 10.6.6�, �12.6.4�, HL, and HHC is
consistent with that of MC simulation. Furthermore, the
phase boundaries are also in agreement with those of MC
qualitatively. As MC cannot determine the free energy di-
rectly, the phase region can just be estimated from the equi-
librium energy. However, the SCMFT can identify the phase
stability region by calculating the free energy. The phase
regions of �8.8.4�, �6.6.6�, �8.6.4; 8.6.6�, �10.6.4; 10.6.6�,
�12.6.4�, and HL are 0.427
x
0.728, 0.728
x
1.390,
1.390
x
1.683, 1.683, 
x
2.106, 2.106
x
2.608, and
2.608
x
6.605, respectively. Along this phase path, ex-
perimentalists synthesized a set of copolymers, and observed
their self-assembling microstructures by using SAXS and
transition electron microscopy �TEM� measurements. In ex-
periments by Takano et al.,20 three ABC star terpolymers,
composed of polystyrene �S�, polyisoprene �I�, and poly�2-
vinylpyridine� �P�, are investigated with volume ratios of
1:1:0.7, 1:1:1.2, and 1:1:1.9, respectively. The formed struc-
tures of I1.0S1.0P0.7, I1.0S1.0P1.2, and I1.0S1.0P1.9, are �6.6.6�,
�8.8.4�, and �12.6.4�, respectively. Although, the correspond-
ing sequence of the structures in our SCMFT calculations is
�8.8.4�, �6.6.6�, and HL, the locations of these structures are
not far away from our phase regions, especially for �6.6.6�
and �12.6.4�. The discrepancy between theoretical results and
experimental observations can be attributed to the different
interactions, different monomer sizes, and polydispersity.

To testify the influence of �s on the phase transitions of
the morphologies formed in the ABC star copolymers, here
we calculate the phase transition between �10.6.4; 10.6.6�
and �12.6.4� along the symmetric axis of fB= fC with two
different values of �s=0.001 and �s=0.005. The results of
the free energy together with the free energy difference, de-
fined as Fdiff=F�10.6.4;10.6.6�−F�12.6.4�, are present in Table II.
The transition points, estimated by linearly interpolating the
free energy difference as a function of fA from the data of

FIG. 3. �a� Free energy differences from the value of the homogeneous
phase as a function of the volume fraction of A composition for ABC star
triblock copolymers with symmetric B and C arms. With fA increasing, the
phase structure sequence is from L3, through �8.8.4�, �6.6.6�, �8.6.4; 8.6.6�,
�10.6.4; 10.6.6�, �12.6.4�, HL, to HHC. The inset shows the transition be-
tween HL and HHC. �b� Phase stability regions as a function of the arm-
length ratio of x= fA / fB. Note that one break is applied with the x axis for
the reason of clarity of the figure.

TABLE II. The free energies of �10.6.4; 10.6.6� and �12.6.4�, as well as their free energy difference calculated
with �s=0.001 and �s=0.005, respectively.

fA

�10.6.4; 10.6.6�
�s=0.005

�12.6.4�
�s=0.005 �s=0.005

�10.6.4; 10.6.6�
�s=0.001

�12.6.4�
�s=0.001 �s=0.001

F /nkBT F /nkBT Fdiff /nkBT F /nkBT F /nkBT Fdiff /nkBT

0.51 11.496 881 11.504 342 0.007 461 11.502 275 11.509 710 0.007 435
0.52 11.469 376 11.457 015 �0.012 361 11.474 692 11.462 265 �0.012 4273
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�s=0.001 and �s=0.005, are at fA=0.513 74 and fA

=0.513 76, respectively. The influence of �s on the transition
point can be safely neglected.

The basic vectors play an important role during the mea-
surements of the microstructures and can be determined by
SAXS or TEM techniques in experiments. In solving the
SCMFT equations, the free energy is minimized with respect
to the box sizes which are related to the lengths of basic
vectors by simple algebraic relations. Here, the magnitudes
of the basic vectors of 2D structures are present in Fig. 4. a1

is denoted by the unfilled symbols �including the cross sym-
bols� and a2 is denoted by the filled symbols when a1�a2.
Note that the value of a1 for HL, which decreases from
2.796Rg to 1.621Rg when fA increases from 0.54 to 0.78, is
not shown in order to narrow the range of the magnitude for
the reason of clarity of the figure. The magnitude of a1=a2 of
�6.6.6� is slightly smaller than that of �8.8.4�, and they do not
have large change for varying volume fractions. For ex-
ample, a1=a2 of �6.6.6� varies between about 4.265Rg and
4.327Rg with a maximum at fA=1 /3 when increasing fA

=0.24 to fA=0.44. In experiments,23 the lengths of basic vec-
tors are measured as a1=80 nm and a2=67 nm for �6.6.6� of
the copolymer I1.0S1.0P0.7, and a1=59 nm and a2=56 nm for
�8.8.4� of the copolymer I1.0S1.0P1.2. Including the factor that
I1.0S1.0P0.7 has smaller molecular weight than I1.0S1.0P1.2, a1

or a2 of �6.6.6� are notably larger than those of �8.8.4� in
experiments. This feature is different from the prediction of
our theoretical calculations. However, that a1=a2 of �12.6.4�
is much larger than that of �8.8.4� or �6.6.6� in experimental
measurements is qualitatively consistent with our theoretical
results. For �8.6.4; 8.6.6� and �10.6.4; 10.6.6�, a2 is larger
than a1. The length ratios a2 /a1 in the shown regions are
larger than 	3 for �8.6.4; 8.6.6� and are smaller than 	3 for
�10.6.4; 10.6.6�. This suggests that the octagons are elon-
gated in �8.6.4; 8.6.6� and the decagons are compressed in
�10.6.4; 10.6.6�, along the direction of a2. The deviations
from the regular polygons for both �8.6.4; 8.6.6� and �10.6.4;
10.6.6� are reduced slightly as increasing fA.

It can be helpful to split the free energy into two parts:
internal �U� and entropic �−TS�. The internal and entropic
contributions to the free energy can be expressed as8

U

nkBT
=

1

V
� dr��ABN�A�r��B�r� + �ACN�A�r��C�r�

+ �BCN�B�r��C�r�� ,

�5�

−
S

nkB
= − ln Q −

1

V
� dr��A�r��A�r� + �B�r��B�r�

+ �C�r��C�r�� .

�U /nkBT, the internal energy subtracted by that of the ho-
mogeneous phase, is shown in Fig. 5 together with the en-
tropic energy of −S /nkB. From Fig. 5�a�, we can find that L3
has very high internal energy at small fA which is induced by
the penetrations of B and C arms through A domains. At the
same time, L3 is favorable from the aspect of entropic en-
ergy, or the chain stretching energy, because the B and C
arms can get the largest entropy in the lamellar structure
when they have equal large lengths compared with the A
arm. The combination of the two contributions make L3 be
the stable phase when fA	0.176. When increasing fA, the
internal energy becomes more dominant on the entropic en-
ergy and the stable phase transfers from L3 to the phases of
polygon-tiling patterns where the arm penetrations in dis-
similar phase regions are diminished. After entering the 2D
polygonal phases, the variation of the internal energy be-
comes smoother without obvious discontinuity. However,
when the stable phase transfers from �12.6.4� to HL, a sig-
nificant drop appears again. The reason is similar to that of
the appearance of L3 as a stable phase.

On the above phase path, two of 2D polygonal phases,
�10.6.4; 10.8.4� and �8.6.4; 8.6.6; 12.6.4�, do not appear. To
obtain the stability region of the two phases which have been
observed in experiments, we turn to study another phase path

FIG. 4. The magnitudes of basic vectors in unit of the radius of gyration Rg

of these 2D structures along the phase path in Fig. 2. The unfilled �including
the symbols of cross� and filled symbols denote the vector lengths of a1 and
a2, respectively. For the reason of clarity, the a1 of HL is not shown.

FIG. 5. �a� Internal part �U /nkBT and �b� entropic part −S /nkB of the free
energy difference �F /nkBT in Fig. 2�a� as a function of fA.
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by varying fA for fixed fC=0.2. The free energy difference as
a function of fA varying from 0.4 to 0.6 is plotted in Fig. 6
and the corresponding lengths of the basic vectors are plotted
in Fig. 7. Between the phases of �8.8.4� at fA=0.4 and HL at
fA=0.6, �10.6.4; 10.8.4� and �12.6.4� appear as stable phases.
The phase of �8.6.4; 8.6.6; 12.6.4� is metastable as its free
energy is higher than that of �8.8.4�, or �10.6.4; 10.8.4�, or
�12.6.4� between fA=0.46 and fA=0.52. From the tendency
of the curve, it can be concluded that �8.6.4; 8.6.6; 12.6.4�
would not become stable for wider phase region. This is
justified by our following more systematical calculations of
the phase diagram. From the plot of the lengths of the basic
vectors, we can find that the length of basic vectors of �8.6.4;
8.6.6; 12.6.4� is as large as about a1=a2=10Rg, which is
slightly larger than that of �10.6.4; 10.8.4�, and it has a slow
decreasing tendency as fA increases. The large magnitude of
the basic vector is resulted by the inserting of an octagonal A
domain between two neighbor decagonal A domains. After
splitting the free energy into internal energy and entropic
energy with the formulas of Eq. �5� �see Fig. 8�, the stability
of �8.6.4; 8.6.6; 12.6.4� can be understood more readily. Al-
though its internal energy is not much higher than that of
�10.6.4; 10.8.4� or �12.6.4�, but its entropic energy is signifi-
cantly higher than that of other structures. The Archimedean
polygon-tiling principle ensures �8.6.4; 8.6.6; 12.6.4� with
reasonable low interfacial energy, which mainly composes
the internal energy. From the density plot of Fig. 1�j�, it can
be seen that both the octagonal A domains and the hexagonal
B domains are deformed from the shapes of their regular

polygons. As a consequence, these deformations can induce
nonuniform chain stretching which results in an entropic en-
ergy penalty.8

With the knowledge of these structures, the phase dia-
gram can be determined by comparing the free energy
among possible candidate structures. For the case of three
equal interaction parameters, the triangular phase diagram is
threefold symmetric and is mirror symmetric with its three
axes of fA= fB, fA= fC, and fB= fC. Therefore, the calculation
of the whole triangular phase diagram is reduced to one-
sixth. The triangular phase diagram obtained by our SCMFT
calculations is given in Fig. 9. To focus on the stability of 2D
polygonal phases, only the central region of the phase dia-
gram is determined. Six phase regions of the 2D polygonal
phases are determined by calculating the transition bound-
aries between them and their surrounding phases. Besides the

FIG. 6. The free energy difference �F /nkBT as a function of fA for fixed
fC=0.2. The phase of �8.6.4; 8.6.6; 12.6.4�, denoted as filled squares, does
not appear as stable one in this parameter region.

FIG. 7. The lengths of basic vectors as a function of fA along the phase path
of fixed fC=0.2.

FIG. 8. �a� Internal energy of �U /nkBT and �b� entropic energy of −S /nkB

of various structures as a function fA on the phase path of fixed fC=0.2.

FIG. 9. The triangular phase diagram of ABC star triblock copolymers with
equal interaction parameters of �ABN=�ACN=�BCN=60. The phase diagram
is composed of a set of transition points shown as black dots.
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2D tiling patterns, three main surrounding structures, i.e., L3,
HL, HC, are used to calculate their phase boundaries. In
addition, the phase transition point between HL and the 3D
hierarchical cylinders of HHC is given in Fig. 9. The phase
regions of �12.6.4� and HL are calculated by comparing their
free energy with that of L3 or HC without considering the
possible existence of core-shell gyroid phase. According to
the phase diagram of diblock copolymers,37 the phase region
of core-shell gyroid phase must be small for this degree of
segregation if it exists. The phase of �8.6.4; 8.6.6; 12.6.4� do
not appear as a stable phase in the considered phase regions.
The stability of �8.6.4; 8.6.6; 12.6.4� has been analyzed in
the above paragraph. The central part of the triangular phase
diagram has a consistent shape with the whole phase dia-
gram.

Two more phase paths, with fixed fB: fC=1.8 or fA: fC

=2, are examined by experiments besides the symmetric
phase path.24 Some observed structures in experiments are
not exactly located in the predicted phase regions of our
phase diagram. Besides the factors mentioned previously,
which may induce the discrepancies, there is another impor-
tant factor in the experiments which is that many star copoly-
mers are obtained by blending two kinds of copolymers,
even adding additional I homopolymer. For example,
I1.0S1.8P2.9 are obtained by blending I1.0S1.8P2.5 and
I1.0S1.8P3.2. The two lengths of the P arm can definitely in-
fluence the phase stabilities. Another important difference
between our results and experiments is that �8.6.4; 8.6.6;
12.6.4�, as a metastable phase in our calculations, is observed
with I1.0S1.8P2.0 in experiments. There are two main possible
reasons for the experimental observation of �8.6.4; 8.6.6;
12.6.4�. The first one is that there is a considerable possibil-
ity to observe a metastable phase in experiments. The second
one is that there are many differences between theoretical
systems and experimental conditions mentioned before.

Although there is a discrepancy between our theoretical
calculations and experimental observations, our results are in
general agreement with most of other theoretical results of
either SCMFT calculations or DPD simulations. Besides the
early MC research on the symmetric phase path of fB= fC by
Gemma et al.,11 for which careful comparisons have been
given in the previous paragraph, a few more literatures have
been devoted to the investigation of the phase diagram of
ABC star copolymers in recent years. Tang et al.40 estimated
a phase diagram with �ABN=�ACN=�BCN=35 by using 2D
SCMFT calculations. In their phase diagram, the phases of
�6.6.6�, �8.8.4�, HL, and L3, are located in the similar regions
as ours although a few polygonal phases are missing. In
2008, Huang and co-workers carried DPD simulations on the
structure formations of the copolymers and constructed a
phase diagram in the Fig. 4 of Ref. 30. They observed more
polygonal structures than Tang et al.40 in similar phase re-
gions as those in our phase diagram. In their simulations, two
stable polygonal phases, �12.6.4� and �8.6.4; 8.6.6�, are not
observed. Very recently, Zhang et al. examined the phase
behaviors of the triblock copolymers with the generic spec-
tral method focusing on the discovery of new phases. Their
phase diagram is qualitatively consistent with ours. However,
there are obvious discrepancies. First, our phase diagram is

much more detailed which can be seen from the shapes of
phase boundaries. This difference is resulted by the limited
accuracy of the free energy of the generic spectral method,
which is more dependent on the number of basis functions
than the traditional spectral method. Second, the polygonal
phase of �10.6.4; 10.8.4� is not observed in their phase dia-
gram.

IV. CONCLUSIONS

In conclusion, we have studied the phase behavior of
ABC star triblock copolymers with �ABN=�ACN=�BCN
=60 by using the OpS2 real-space SCMFT calculations to-
gether with the generic spectral method. The spectral method
is mainly used to search new structures and the real-space
method is used to determine the stability regions of these
observed structures. We test the reliability of the OpS2 ap-
proach with the phase transition between the bcc sphere
phase and the hex cylinder phase of AB diblock copolymer.
The comparisons of our real-space results of various discreti-
zation on the contour length with those of the spectral
method indicate that the phase transition boundaries deter-
mined by the OpS2 approach are reliable even for the segre-
gation as strong as �N=60. For the ABC star triblock co-
polymers, we mainly focus on the phase regions of 2D
polygon-tiling patterns and include ten 2D phases and one
3D phase. We first determined the phase stability along the
phase path with two equal arm lengths. Our results are well
consistent with those of MC simulations. Then we calculated
the phase regions along the phase path with fixed fC=0.2. On
this phase path, we analyzed the stability of �8.6.4; 8.6.6;
12.6.4� and found that it is a metastable phase. Finally, we
constructed the triangular phase diagram with these candi-
date phases. Except for �8.6.4; 8.6.6; 12.6.4�, there are ten
stable phases composing the triangular phase diagram. In
general, the phase regions predicted by our SCMFT calcula-
tions are in good agreement with other theoretical results of
either SCMFT calculations or DPD simulations. However,
our results are more detailed and comprehensive, and espe-
cially more phases are included in the phase diagram. By
comparing the present results with those obtained by the ge-
neric spectral method alone, we find that most of structures
found by the generic spectral method are stable ones. This
suggests that the generic spectral method is useful for the
search of new structures. However, the discrepancies of the
phase diagrams indicate that using the generic spectral
method alone to determine phase diagrams is not efficient.
The combination of the real-space method and the generic
spectral method is a feasible strategy in the study of phase
behaviors of complex block copolymers.

The star triblock copolymers have complex self-
assembling behaviors in bulk. Our careful calculations and
analysis are helpful to understand the self-assembling
mechanism of polygonal structures as well as other interest-
ing structures. However, there are still notable discrepancies
between the theoretical predictions and experimental obser-
vations. It should motivate further investigations on the
phase behaviors of the triblock copolymers in future. For
example, in experiments of ISP triblock copolymers, the
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three Flory–Huggins interactions are not equal and have the
relation of �IP��IS
�SP. For this case of interactions, the
phase diagram becomes more complicated than the present
one because it has only one mirror symmetric axis. There-
fore, its calculation increases from one-sixth to one-half of
the whole triangular phase diagram. The present phase dia-
gram is a useful guide for future calculations.
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